Combinatorial Heterogeneous Catalysis

Identification of a new blue photoluminescent (PL) composite material, Gd₃Ga₄O₁₂/SiO₂

Role of catalysis in the economy

- Catalysts are used globally in the manufacture of over 7,000 products worth over $3 trillion per year
- Catalysts are used in 60% of chemicals production and 90% of processes
- Globally catalyst manufacturing is about an $8.5 billion per year industry
- Globally there are about 100 catalyst manufacturing companies

<table>
<thead>
<tr>
<th>Catalyst usage</th>
<th>Annual turnover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum Refining</td>
<td>$2.2 billion</td>
</tr>
<tr>
<td>Polymerization</td>
<td>$2.2 billion</td>
</tr>
<tr>
<td>Chemicals Production</td>
<td>$2.1 billion</td>
</tr>
<tr>
<td>Environmental Protection</td>
<td>$2.1 billion</td>
</tr>
</tbody>
</table>
Parameter space

Let us assume first that there are 50 useful, stable elements in the periodic table that are suitable candidates for heterogeneous catalysis:

\[N(n_E/n_r) = n_E!/[n_r!(n_E-n_r)!] \]

- \(N \) = total number of combinations
- \(n_E \) = number of elements
- \(n_r \) = specific groups (binary, ternary etc.)

...gives 1225 binary, 19 600 ternary, 230 000 quaternary, and \(10^{10} \) decanary combinations of these elements!

Combinatorial catalysis

Large diversities of solid-state materials libraries are prepared, processed, and tested for activity and selectivity in a high-throughput fashion.

- speeds up the pace of research
- the chances of discovery of totally new and unexpected catalytic materials are increased
- use of systematically acquired data and data-mining technologies
- discovery of trends and patterns of structure–activity relations from large databases
Rapid library synthesis

- Two primary categories:
 1. thin film deposition (on-chip)
 2. solution-based synthesis (microwells)

- Since the ultimate goal of catalysis research is to develop industrial catalysts, it is desirable that each step of the combinatorial effort lends itself to large-scale production

Thin-film deposition

- Library is annealed to induce interfilm diffusion and to form alloys
- Fabricated using semiconductor device manufacturing techniques
CO oxidation screening

- thin-film library with 120 ternary combinations of Rh-Pd-Pt
- prepared by sequentially depositing films of the individual elements onto a quartz substrate
- 1.5 mm diameter spots using masks
- deposition process was accomplished in 10 sequential steps, with 10 nm of material being deposited in each step

![Diagram](image)

Solution-based synthesis

Miniaturization and automation of coprecipitation and impregnation methods:

Micro-jet liquid-dispensation system

![Diagram](image)

Composition mapping

Array microreactor

![Diagram](image)
Anode electrocatalyst for methanol oxidation

\[\text{CH}_3\text{OH} + \text{H}_2\text{O} + \text{Cl}_2 + 6\text{H}^+ \rightarrow 6\text{Cl}^- \]

Ternary Pt-Os-Rh array, prepared by manually pipetting metal salts and aqueous NaBH₄ onto Toray carbon paper:

Pt-Rh-Os ternary array in 6 M aqueous methanol (pH 6) quinine indicator.

Borohydride-reduced, inkjet-printed array of electrocatalysts on Toray carbon paper:

4% Pt/41% Ru/10% Os/5% Ir

High throughput screening

“\ When new active solids are developed empirically, by trial-and-error processes employed on a few selected samples, the whole procedure is highly speculative and leads to a very slow rate of discovery for the industry in question. “

• Implements ways to identify the best possible candidate
• Methods adapted from drug discovery tools
• Automated protocols for testing
The split & pool method

A massive parallel arrangement of micro-reaction chambers containing individual beads, each bead representing one catalyst as a member of a library of solid catalysts.

- Enables the generation of every possible combination in a search space
- Difficulty in recognition of a molecule in a mixture
- Useful tool for primary screening

The hierarchical approach

- Targeted to identify the best combinations of redox metals
- As the screening proceeds, the number of components in the catalytic system increases
- Higher degrees of interactions are sought in a stepwise manner

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td>21.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td>32.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
<td></td>
<td>44.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78.6</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90.0</td>
</tr>
</tbody>
</table>

M1	100	100	100	100	100	100	100	100
M2	90.0	78.6	67.1	55.7	44.3	32.9	21.4	10.0
Total	100	100	100	100	100	100	100	100
Design of experiments (DoE) methodology

- Simultaneous modification of variables (factors) and the avoidance of redundant experiments
- Quantifies the effect of each individual variable on the targeted properties
- Efficient for the fine optimization of both catalyst synthesis and process conditions

Evolutionary algorithms

- Mimic the evolutionary process of living species by using similar genetic operators—mating, crossover and mutation—to single out the individuals with the “genetic information” leading to optimum performance
- New population is generated through genetic operators
• The optimal population size and the total number of generations required to find the global optimum

![Graphs showing population growth over generations with different population sizes.](image)

Reactor Design

• Ideally can be used to measure kinetics
• High modularity allows adaptation to different process conditions
• Chemical inertness, low dead volume and highly reproducible conditions in the channels
• all relevant process conditions must be controlled and monitored, i.e. *in situ* parallel measurement of pressure, temperature, flow, stirring, gas uptake and reaction product composition

Six-flow reactor setup adapted to fast kinetic studies.
Use of model reactions

- Mechanisms are usually well-known or at least well-documented
- Use of simple reaction mixtures and the absence of industrial constraints make it easy to set up the appropriate reactions
- Example: o-xylene hydrogenation
 1. structure sensitive
 2. cis/trans selectivity can give an indication of the electronic density of the metal centers

![Diagram](image1.png)

The closer the points are together, the more similar the physiochemical properties of the catalyst.

Computational chemistry

- Used to predict catalyst activities
- Identify the most promising compounds among thousands of possibilities, or at least to weed out insufficiently active compounds
- Example: density functional theory (DFT) method to predict catalyst activity using the energy of dissociation of reactants on the metallic surface as the descriptor directing catalyst activity

![Diagram](image2.png)
Conclusions

The possibility of performing hundreds or thousands of experiments increases the chance of success...

...you might graduate a lot faster.